ارائه مدلی جهت پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از سیستم استنتاج فازی عصبی انطباق پذیر (anfis)
Authors
abstract
یکی از مهم¬ترین تهدیدات اقتصاد ملی، ورشکستگی شرکت¬ها است. ارزیابی ورشکستگی، اطلاعات ارزشمندی را فراهم می¬نماید که به واسطه آن، دولت¬ها، سرمایه¬گذاران و سهامداران می¬توانند تصمیم-گیری¬های مالی خود را به منظور جلوگیری از ضرر و زیان¬های احتمالی پایه¬گذاری کنند. هدف از این تحقیق، ارائه مدلی جهت پیش¬بینی ورشکستگی با استفاده از سیستم استنتاج فازی عصبی انطباق¬پذیر (anfis) است. جامعه آماری برای انجام تحقیق، شرکت¬های پذیرفته شده در بورس اوراق بهادار تهران در دوره زمانی 1380 تا 1389 است که با توجه به ماده 141 قانون تجارت، شامل 40 شرکت ورشکسته و 40 شرکت غیر¬ورشکسته می¬باشد. این شرکت¬ها به طور تصادفی به سه مجموعه تقسیم شدند: مجموعه آموزش جهت طراحی مدل، مجموعه آزمایش و مجموعه وارسی جهت اعتبارسنجی مدل. نسبت¬های مالی این شرکت¬ها در سال قبل از ورشکستگی به عنوان متغیرهای ورودی anfis درنظر گرفته شد. مدل طراحی شده ورشکستگی را با دقت 83.75 درصد یک سال پیش از وقوع آن پیش¬بینی نمود. بنابراین می¬توان نتیجه گرفت که anfis ابزاری مناسب برای پیش¬بینی درماندگی مالی شرکت¬های پذیرفته شده در بورس اوراق بهادار تهران است.
similar resources
ارائه مدلی جهت پیشبینی ورشکستگی شرکتهای پذیرفته شده در بورس اوراق بهادار تهران با استفاده از سیستم استنتاج فازی عصبی انطباق پذیر (ANFIS)
یکی از مهم¬ترین تهدیدات اقتصاد ملی، ورشکستگی شرکت¬ها است. ارزیابی ورشکستگی، اطلاعات ارزشمندی را فراهم می¬نماید که به واسطه آن، دولت¬ها، سرمایه¬گذاران و سهامداران می¬توانند تصمیم-گیری¬های مالی خود را به منظور جلوگیری از ضرر و زیان¬های احتمالی پایه¬گذاری کنند. هدف از این تحقیق، ارائه مدلی جهت پیش¬بینی ورشکستگی با استفاده از سیستم استنتاج فازی عصبی انطباق¬پذیر (ANFIS) است. جامعه آماری برای انجام ت...
full textارائه مدل ریاضی پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران
در این مقاله پنج مدل مهم پیشبینی ورشکستگی را مطالعه و از میان متغیرهای پنج مدل، مدل بازطراحی شده پیشبینی ورشکستگی را ارائه میکنیم که دربرگیرنده هشت متغیر میباشد. مسأله اصلی در این تحقیق این است که با بررسی و تحلیل صورتهای مالی شرکتهای پذیرفته شده در بورس اوراق بهادار تهران بتوانیم مدلی برای پیشبینی ورشکستگی شرکتها ارائه نماییم. به منظور طراحی مدل، از اطلاعات دو گروه از شرکتهای پذیرفت...
full textپیش بینی ورشکستگی شرکت های پذیرفته شده در سازمان بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی
آگاهی از وضعیت مالی شرکت های بازار سرمایه همیشه یکی از دغدغه های سهامداران و تحلیلگران اقتصادی است؛ از این رو تحلیل گران و محقیق بازار های مالی همیشه به دنبال روش هایی برای پیش بینی شرایط آتی شرکت های حاضر در بازار سرمایه بودند. تحقیق پیش رو نیز به دنبال ایجاد مدلی برای پیش بینی ورشکستگی شرکت های حاضر در بازار بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی است. در این تحقیق از نسبت های مالی...
full textپیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از الگوریتم کرم شب تاب(FA)
سرمایه گذاران ، سهامداران، مدیران و دیگر ذینفعان با ورشکسته شدن شرکت، متضرر شده و دارایی خود را از دست خواهند داد. بنابراین وجود مکانیزمی که به بررسی و پیش بینی بحران مالی شرکت ها بپردازد امری ضروری و اجتناب ناپذیر بشمار می رود. تحقیقات متعددی در خصوص پیش بینی ورشکستگی صورت گرفته که استفاده از الگوریتم های هوش مصنوعی و فرا اکتشافی از نمونه مدل های دهه اخیر می باشند. در این پژوهش با استفاده از ا...
full textپیش بینی ورشکستگی مالی شرکت های بورس اوراق بهادار تهران با استفاده از شبکههای عصبی مصنوعی
هدف اصلی این مقاله پیشبینی ورشکستگی مالی شرکتها در بورس اوراق بهادار تهران به وسیلهی شبکههای عصبی مصنوعی است. مقادیر میانگین مربوط به نسبتهای مالی کلیدی در پژوهشهای صورت گرفته در پیشینه موضوع بهعنوان ورودی شبکههای عصبی انتخاب شدهاند. شبکه عصبی بهکار گرفته شده در این مقاله از نوع پرسپترون چند لایه است که به روش الگوریتم پس انتشار خطا آموزش دیدهاند و شامل شبکه عصبی پیشخور سه لایه با ت...
full textطراحی مدل پیش بینی ورشکستگی شرکت ها به وسیله شبکه های عصبی فازی (مطالعه موردی:شرکت های بورس اوراق بهادار تهران)
در این مقاله به منظور پیش بینی درصد ورشکستگی شرکت های بورسی از مدلهای شبکه عصبی فازی استفاده گردیده که توانایی کار در محیط پویا و غیر قطعی را امکان پذیر می سازد. در این میان با استفاده از منطق فازی متغییر های مختلف کلامی به منظور تعریف هر شاخص مشخص گردیده است و با ایجاد توابع عضویت هر کدام با استفاده شبکه عصبی به ایجاد یک سیستم یادگیرنده اقدام شده است. از میان مدل های مختلف شبکه عصبی،شبکه پرسی...
full textMy Resources
Save resource for easier access later
Journal title:
مهندسی مالی و مدیریت اوراق بهادارPublisher: دانشگاه آزاد اسلامی واحد تهران مرکزی
ISSN 2251-9165
volume 5
issue 18 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023